National Repository of Grey Literature 21 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Deposition of Ga nanostructures on graphene membranes
Severa, Jiří ; Mikulík, Petr (referee) ; Mach, Jindřich (advisor)
This diploma thesis deals with the preparation of the graphene membranes for depo-sition of gallium atoms by the molecular beam epitaxy. In the first part properties ofgraphene and methods of its production are described. Second part focuses on the gra-phene membranes, their specific properties, applications and methods of production. Thirdpart describes growth theory of the thin films. Practical part is focused on preparationof graphene membranes, which consists of covering the holes in the silicon substrate bygraphene layer. For that mechanical exfoliated and chemical vapor deposited graphenewere used. Subsequently, gallium atoms were deposited on these membranes by molecularbeam epitaxy and in situ observed by scanning electron microscopy.
Reuse of wastewater in multifunctional buldings
Skřička, Jakub ; Úterský, Michal (referee) ; Hlavínek, Petr (advisor)
This diploma thesis presents reader with current knowledge in the field of gray wastewater reuse. The theoretical part describes the current state of water in the world, thus characterizes wastewater and describes its treatment. Further, this section describes the possibility of obtaining thermal energy from wastewater. At the end of the theoretical part, the reader is presented with some existing buildings in the Czech Republic that use the wastewater re-use technology system. In the following practical part, all the knowledge from the theoretical part are applied for a concrete project of construction of a graywater re-use technology system in the area of Vlněna in Brno city.
Biocompatible Amphiphilic Compounds and their Interactions with Polymers
Burdíková, Jana ; Sedlařík, Vladimír (referee) ; Bakoš, Dušan (referee) ; Pekař, Miloslav (advisor)
This work is focused on the study of interaction between hyaluronan and high-biocompatible amphiphilic molecules. Using fluorescent probe method, screening of the interaction of cationic lipid 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), mixture of this cationic lipid with zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphochloline (DPPC), with hyaluronan, both native and hydrophobically modified was carried out. Results showed the self-aggregation of DPPC and DPTAP independently on lipids ratio in the mixture and the interaction of DPTAP and DPPC/DPTAP aggregates with hyaluronan at specific ratio of DPTAP and hyaluronan concentration. Physical properties of formed membranes and the influence of cholesterol were also investigated at different DPPC and DPTAP concentration ratio. Last but not least, the non-ionic surfactant-DPPC systems were studied, namely, the size of the formed aggregates, the thermodynamics of solubilisation and the interaction with native hyaluronan.
Membrane separation
Babíková, Barbora ; Másilko, Jiří (referee) ; Svěrák, Tomáš (advisor)
This diploma thesis deals with the general characteristics of membrane processes and separations. It includes a chapter on the history of development of the technology industry using membranes as a medium for separating chemicals based on their specific properties and also the importance of such processes at present. This work then introduces the basic principles of mass transport by membranes and describes various types of membranes and materials used for their production. It also deals with electromembrane separations, including electrodialysis. The practical part focuses on experimental separation of solutions of four sodium salts by means of electrodialysis. Based on the electrical current and conductivity measurements of these solutions in time during membrane separation are evaluated process parameters such as efficiency, energy consumption, transferred electrical charge, and mass of the sodium salt.
Novel materials for membrane gas separation
Giel, Verena ; Pientka, Zbyněk (advisor) ; Izák, Pavel (referee) ; Vopička, Ondřej (referee)
The implementation of polymer membranes in gas separation applications has been investigated to a great extent. Nevertheless, only a few types of polymers are used in commercial applications, disclosing the need for new materials with superior membrane performance to make membrane processes a more competitive technology over the conventional ones. Based on this context, this work focuses on the development of new polymeric membranes. Polyaniline (PANI), a multifaceted polymer that can change its structural properties upon various modification procedures, was chosen as membrane material. PANI membranes possess attractive O2/N2 selectivities, wherefore it is an interesting candidate for the use in gas separation applications, such as generation of oxygen-enriched air or inert gas generation. However, membranes made from neat PANI are suffering from brittleness and thus create leak paths through the membrane. Therefore PANI was blended with polybenzimidazole (PBI), a temperature stable polymer with good film-forming properties facilitating the preparation of thin, stable polymer films. Furthermore, several techniques were investigated including acid-doping, thermal treatment, and addition of titanate nanotubes (TiNTs) to enhance the separation properties. The materials that have been prepared are: 1)...
Transport of charged and neutral particles across the model biomembranes
Parisová, Martina ; Stiborová, Marie (advisor) ; Moserová, Michaela (referee)
This work was focused on the preparation of model stabilized phospholipid membranes formed on porous polycarbonate carrier. 1,2-dipalmitoyl-sn-glycero-3-phosphocholin was used for their formation in hydrophilic pores of polycarbonate carrier. For characterization of the formation of phospholipid layers, their changes and a study of transport processes, electrochemical impedance spectroscopy and voltammetry were used. Transport of cadmium and copper ions was studied in the presence and in the absence of ionophore calcimycin which was incorporated into the formed of phospholipid membrane. Because these ions are often bound in complexes with various substances, such as low molecular weight organic acids (LMWOAs), this work was also focused on the transport of copper and cadmium ions across the model phospholipid membranes in the presence of malic acid, citric acid and oxalic acid at different pH. Besides the use of ionophore, some pilot experiments were performed to realize the transfer of copper ions using two peptides, nisin and transportan 10. Formation of phospholipid membranes and the transport processes were characterized by two proposed electric equivalent circuits which correspond to the covered and to the uncovered polycarbobate carrier. Keywords: Phospholipids, Membranes, Ionophore, Peptid....
Lipid Membranes at the Nanoscale: Single-Molecule Fluorescence Approach
Koukalová, Alena ; Černý, Jan (advisor) ; Malínský, Jan (referee) ; Benda, Aleš (referee)
The complexity of cell membranes is far from being only a simple assembly of lipids and proteins separating cells from the surrounding environment. Each of the thousands of different membrane components performs its specific role in cellular functions, since a multitude of biological processes is mediated by membranes. The understanding of the molecular basis of these processes is one of the important aims of current biological research. Our research employing single- molecule fluorescence methods (e.g. FCS, FCCS, FLIM-FRET) has made a contribution to the knowledge of membrane lateral organization or mechanism of membrane fusion. Furthermore, we revealed the mechanism of membrane activity of a small natural compound. As native cell membranes are very complex structures, we performed the experiments on simplified model lipid membranes that allow studying lipid-lipid or lipid-protein interactions at the molecular level in a controlled way. The first part of this thesis deals with the mode of action of a membrane active secondary metabolite didehydroroflamycoin (DDHR). We demonstrated that DDHR is a pore-forming agent and that this activity is influenced by the presence of cholesterol. Direct visualization of intrinsic fluorescence of DDHR revealed its preferential partitioning into membrane areas...
Modeling interactions of proteins with ions and membranes
Kadlec, Jan ; Jungwirth, Pavel (advisor) ; Kolafa, Jiří (referee)
The protein recoverin, localized in the eye in the rod outer segment of the retina, is a neuronal calcium sensor involved in vision adaptation. Recoverin reversibly associates with cellular membranes via its calcium-activated myristoyl switch. This reversible interaction is vastly dependent on the concentration of calcium ions in the cytosol and on conformation of recoverin. By using methods of molecular dynamics simulations and free energy calculations this work presents a detailed analysis of the energetics of myristoyl insertion into a lipid bilayer and interactions of non-myristoylated recoverin with the membrane. These results are in a perfect agreement with experimental data. The thesis provides a piece of puzzle to the so far unexplored mechanism of myristamide insertion into the membrane and also to recoverin conformational change. It gives an important insight into binding of recoverin to a membrane, which has a significant biological role.
Deposition of Ga nanostructures on graphene membranes
Severa, Jiří ; Mikulík, Petr (referee) ; Mach, Jindřich (advisor)
This diploma thesis deals with the preparation of the graphene membranes for depo-sition of gallium atoms by the molecular beam epitaxy. In the first part properties ofgraphene and methods of its production are described. Second part focuses on the gra-phene membranes, their specific properties, applications and methods of production. Thirdpart describes growth theory of the thin films. Practical part is focused on preparationof graphene membranes, which consists of covering the holes in the silicon substrate bygraphene layer. For that mechanical exfoliated and chemical vapor deposited graphenewere used. Subsequently, gallium atoms were deposited on these membranes by molecularbeam epitaxy and in situ observed by scanning electron microscopy.
Reuse of wastewater in multifunctional buldings
Skřička, Jakub ; Úterský, Michal (referee) ; Hlavínek, Petr (advisor)
This diploma thesis presents reader with current knowledge in the field of gray wastewater reuse. The theoretical part describes the current state of water in the world, thus characterizes wastewater and describes its treatment. Further, this section describes the possibility of obtaining thermal energy from wastewater. At the end of the theoretical part, the reader is presented with some existing buildings in the Czech Republic that use the wastewater re-use technology system. In the following practical part, all the knowledge from the theoretical part are applied for a concrete project of construction of a graywater re-use technology system in the area of Vlněna in Brno city.

National Repository of Grey Literature : 21 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.